* CHOOSING INTEGERS

- How to choose three consecutive integers?

$$
x, \quad x+1, \quad x+2
$$

- How to choose three consecutive even integers: $x, x+2, x+4$
- How to choose three consecutive odd integers: $x, x+2, x+4$
(It is the same as even integers!)

* SEQUENCES \& SERIES

- nth term of an Arithmetic Sequence $\left\{a_{n}\right\}$
with first term $=a_{1}$ and common
difference $=d$ is

$$
a_{n}=a_{1}+(n-1) d
$$

- nth term of a Geometric Sequence $\left\{a_{n}\right\}$ with first term $=a_{1}$ and common ratio $=r$ is

$$
a_{n}=a_{1} \cdot r^{n-1}
$$

- Sum of the first ' n ' terms of an Arithmetic Sequence $\left\{a_{n}\right\}$ with first term $=a_{1}$ and common difference $=d$ is

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

Or

$$
S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]
$$

- Sum of the first ' n ' terms of a Geometric Sequence $\left\{a_{n}\right\}$ with first term $=a_{1}$ and common ratio $=r$ is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

- Sum of an Infinite Geometric Series

$$
S_{n}=\frac{a_{1}}{1-r} \quad \text { if }|r|<1
$$

PERMUTATIONS \& COMBINATIONS

- ' n ' factorial refers to the product of the first ' n ' natural numbers
$=n$!
$=n(n-1) \ldots 3 \cdot 2 \cdot 1$
- $n P r$ refers to the number of different arrangements of ' r ' things taken at a time out of the given ' n ' things. This is when order of the things is matters and is important.

$$
n P r=\frac{n!}{(n-r)!} ;(r \leq n)
$$

- $n C r$ refers to the number of different selections of ' r ' things taken at a time out of the given ' n ' things. This is when order of the things does not matter and is not important.

$$
n C r=\frac{n!}{r!(n-r)!} ;(r \leq n)
$$

* PROBABILITY

- Probability of an Event A is defined as the ratio of the number of favorable outcomes to Event A to the number of possible outcomes and is denoted as $P(A)$
$P(A)=\frac{\text { number of favorable outcomes to Event } A}{\text { number of possible outcomes }}$

$$
=\frac{n(A)}{n(S)}
$$

- Probability of the Event complementary to Event A is denoted as Event \bar{A} is defined as the ratio of the number of unfavorable outcomes to Event A to the number of possible outcomes and is denoted as $P(\bar{A})$

$$
\begin{aligned}
P(\bar{A}) & =\frac{\text { number of unfavorable outcomes to Event } A}{\text { number of possible outcomes }} \\
& =\frac{n(\bar{A})}{n(S)}
\end{aligned}
$$

- The sum of the probabilities of the original event A and the complementary event \bar{A} is always equal to one.
$P(A)+P(\bar{A})=1 \quad$ or
$P(\bar{A})=1-P(A) \quad$ or
$P(A)=1-P(\bar{A})$
- Addition Theorem of Probability: If A and B are any two events then the probability of the happening of at least one of the events is defined as

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- Multiplication Theorem of Probability: If A and B are any two independent events then the probability of the simultaneous happening of both the events is defined as

$$
P(A \cap B)=P(A) \cdot P(B)
$$

* STATISTICS
- Mean or Arithemtic Mean or Average

$$
=\frac{\text { Sum of the } n \text { values }}{n}
$$

- Median refers to the value of the middlemost item in the distribution when all items are arranged either in the ascending order or descending order.
- Mode refers to the value of the most repeated item in the distribution. Range is the difference between the greatest and the smallest data values.
- Standard Deviation is a value that measures how far apart the individual data scores are from the mean. More the spread in the distribution of the values around the mean, higher is the standard deviation and vice-versa.
- A sample is a representative part of the total population. Margin of Error for a survey based on the sample is a value that
estimates the extent to which the conclusions drawn may differ from the results that would have been obtained from surveying the entire statistical population.
- A Confidence Interval for a sample statistic such as the mean is the range of values for which we expect the true population to lie within.
- Statistical Bias: This happens when you are selecting your sample or your data wrong. Usually, this means accidentally working with a specific subset of your audience instead of the whole, rendering your sample unrepresentative of the whole population.
- Weighted Average (Arithmetic Mean) Formula: If one group has N_{1} values with an average \bar{x}_{1} and another group has N_{2} values with an average \bar{x}_{2}, then the combined arithmetic mean of the pooled or combined grouped is \bar{x}_{12} and is found by using the formula -

$$
\bar{x}_{12}=\frac{N_{1} \cdot \bar{x}_{1}+N_{2} \cdot \bar{x}_{2}}{N_{1}+N_{2}}
$$

* PROPORTIONS

- Cross-Product Property of Proportions

$$
\text { If } \frac{a}{b}=\frac{c}{d} \text {, then } a \cdot d=b \cdot c
$$

- Reciprocal Property of Proportions

$$
\text { If } \frac{a}{b}=\frac{c}{d} \text { then } \frac{b}{a}=\frac{d}{c}
$$

* PERCENTAGE
- The statement ' a is $p \%$ of b ' can be converted into a proportion

$$
\frac{p}{100}=\frac{a}{b}
$$

If any two values out of the three values ' a ', ' p ' or ' b ' are given, then we can find the remaining third missing value.

- Finding Original Amount After a Percent Increase

Original Amount
$=\frac{\text { New Amount after an increase of } p \%}{(100+p) \%}$

- Finding Original Amount After a Percent

Decrease

Original Amount

$$
=\frac{\text { New Amount after a decrease of } p \%}{(100-p) \%}
$$

- Finding the Percent of Increase or Decrease Percent of Change $=\frac{\text { Amount of Change }}{\text { Original Amount }} \times 100$

* LINEAR FUNCTION

- Slope of a line

- Slope of a line passing through two points

$$
\begin{aligned}
& A\left(x_{1}, y_{1}\right) \text { and } B\left(x_{2}, y_{2}\right) \\
& \quad=m=\frac{\text { Rise }}{\text { Run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}
\end{aligned}
$$

- Slope of Parallel Lines

- Parallel lines have equal or same slope Slope of line $\overleftrightarrow{A B}=$ Slope of line $\overleftrightarrow{C D}$

$$
m_{1}=m_{2}
$$

- Slope of Perpendicular Lines

Perpendicular lines have negative reciprocal slopes

$$
m_{1}=\frac{-1}{m_{2}}
$$

Or
Product of the slopes is -1
Or

$$
m_{1} \cdot m_{2}=-1
$$

- Slope of the X - axis and Horizontal Lines

- Slope of the X - axis or a horizontal line or a line parallel to the X - axis is zero or has no slope
- Slope of the X - axis or line $\overleftrightarrow{A B}$

SAT TIPS \& TRICKS
Dr: B's MATH MEALS
scholartutorials.com 732-744-9555

$$
=\frac{0-0}{a-b}=\frac{0}{a-b}=0
$$

- Lines l_{1} and l_{2} are horizontal and parallel to the X - axis
- Slope of line $l_{1}=$ Slope of line $l_{2}=0$
- Slope of the Y - axis and Vertical Lines

- Slope of the Y - axis or a vertical line or a line parallel to the Y - axis is undefined or infinity (∞)
- Slope of the X - axis or line $\overleftrightarrow{A B}$

$$
=\frac{a-b}{0-0}=\frac{a-b}{0}=\text { undefined } \text { or } \infty
$$

- Lines l_{1} and l_{2} are vertical and parallel to the Y-axis
- Slope of line $l_{1}=$ Slope of line l_{2}
$=$ undefined or ∞ (infinity)
- Positive Slope \& Negative Slope

- Slope of a line sloping up to the right is positive. Slope of line $\overleftrightarrow{A B}$ is positive (+)
- Slope of a line sloping down to the right is negative. Slope of line $\overleftrightarrow{C D}$ is negative (-)
- Slope-Intercept Form of a Line

- $\quad P(x, y)$ is any variable (moving) point on the line l_{1}
- Equation of line l_{1} with slope $=m$ and y-intercept $=b$ in SLOPE-INTERCEPT FORM is
$y=m x+b$
- Interpreting $y=m x+b$
- The constant ' m ' indicates for each unit change in ' x ' how many units change in ' y^{\prime} results.
- In a linear function, the value of ' y^{\prime} changes by a constant amount for every (one) unit change in of ' x '. That constant amount is ' m '.
- If $m>0(+)$, the value of ' y^{\prime} increases by ' m ' units for every (one) unit increase in ' x '.
- If $m<0(-)$, the value of ' y^{\prime} decreases by ' m ' units for every (one) unit increase in ' x '.
- The constant ' b^{\prime} represents some starting value of ' y ' or some initial condition. It is the value of ' y ' when $x=0$.
- Point-Slope Form of a Line

- Equation of the line passing through a point $A\left(x_{1}, y_{1}\right)$ and having slope $=m$ in POINT - SLOPE FORM is

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

- Distance Formula

- Distance from $A\left(x_{1}, y_{1}\right)$ to $B\left(x_{2}, y_{2}\right)$
$=A B$ or $B A=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
- Midpoint Formula

Midpoint between $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

- Section Formula (Internal Division)

If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are the end points of $\overline{A B}$ and $P(x, y)$ divides $\overline{A B}$ internally in the ratio of $m: n$ then the coordinates of the Point of Division P can be found by using the formula based on weighted average:

$$
\begin{aligned}
& x=\frac{m \cdot x_{2}+n \cdot x_{1}}{m+n} \\
& y=\frac{m \cdot y_{2}+n \cdot y_{1}}{m+n}
\end{aligned}
$$

- Equation of the Coordinate Axes

- Equation of the X - axis is $y=0$. This is because every point on the X - axis has its ' y^{\prime} coordinate $=0$. The ' x ' coordinate is any real number.
- Equation of the Y - axis is $x=0$. This is because every point on the Y - axis has its ' x " coordinate $=0$. The ' y 'coordinate is any real number.
- Equation of lines parallel to the X - axis

- Equation of horizontal line l_{1} passing through $A(0, a)$ is $y=a$. In other words, equation of a line parallel to the X - axis and ' a ' units above the $X-a x i s$ is $y=a$.
- Equation of horizontal line l_{2} passing through $B(0,-b)$ is $y=b$. In other words, equation of a line parallel to the X - axis and ' b ' units below the X - axis is $y=b$.

SAT TIPS \& TRICKS
Dr. B's MATH MEALS
scholartutorials.com 732-744-9555

- Equation of lines parallel to the Y - axis

- Equation of vertical line l_{1} passing through $C(0, c)$ is $x=c$. In other words, equation of a line parallel to the Y-axis and ${ }^{\prime} c^{\prime}$ units to the right of the Y - axis is $x=c$.
- Equation of vertical line l_{2} passing through $D(0, d)$ is $x=-d$. In other words, equation of a line parallel to the Y - axis and ' d ' units to the left of the Y - axis is $x=-d$.
- Comparison between Linear and

Exponential functions

- A Linear function changes at a constant fixed amount per unit interval.
- An Exponential function changes by a common ratio over equal intervals.
- System of Linear Equations - Number of

Solutions

If the equations of two lines are

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

There are three possibilities -

1. Intersecting Lines
2. Parallel Lines
3. Overlapping Lines

- Intersecting Lines

These lines have one point of intersection if the Ratio of the Coefficients is unequal

$$
\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \stackrel{c_{1}}{=} \frac{c_{1}}{c_{2}}
$$

(different slopes $m_{1} \neq m_{2}$ and maybe different y - intercepts)

Intersecting Lines ($m_{1} \neq m_{2}$)

- Parallel Lines

These lines are parallel and have no point of intersection if Ratio of the Coefficients is equal but not equal to the Ratio of Constants

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}
$$

(same slope but different y-intercepts)
Parallel Lines $\left(m_{1}=m_{2}\right)$

- Overlapping Lines

These lines are overlapping and have infinite points of intersection if Ratio of the Coefficients is equal to the Ratio of Constants

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
$$

(same slope and same y-intercept)
Overlapping Lines ($m_{1}=m_{2}$)

- $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ overlap and look like a single line.
* RULES OF EXPONENTS
- PRODUCT RULE

$$
a^{x} \cdot a^{y}=a^{x+y}
$$

- QUOTIENT RULE (if $x>y$)

$$
\frac{a^{x}}{a^{y}}=a^{x-y}
$$

- QUOTIENT RULE (if $y>x$)

$$
\frac{a^{x}}{a^{y}}=\frac{1}{a^{y-x}}
$$

- NEGATIVE EXPONENT

$$
a^{-x}=\frac{1}{a^{x}}
$$

- ZERO EXPONENT

$$
a^{0}=1
$$

- POWER OF A POWER RULE

$$
\left(a^{x}\right)^{y}=a^{x y}
$$

- DISTRIBUTIVE PROPERTY FOR EXPONENT OF PRODUCT

$$
(a b)^{x}=a^{x} \cdot b^{x}
$$

- DISTRIBUTIVE PROPERTY FOR EXPONENT OF QUOTIENT

$$
\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}
$$

- If $x^{a}=x^{b}$, since the bases are the same, by comparing the exponents on the two sides $a=b$.
- Scientific Notation: A number is written in scientific notation if it is of the form $c \times 10^{n}$, where $1 \leq c<10$ and ' n ' is an integer.

SAT TIPS \& TRICKS
Dr. B's MATH MEALS
scholartutorials.com 732-744-9555

* EXPONENTIAL FUNCTION

- Exponential Function: A function that involves the expression b^{x} where $b>0$ but $b \neq 1$
- Exponential Growth Function: A function of the form $f(x)=a \cdot b^{x}$ where $b>1$
- Growth Factor: The quantity $1+r$ in the exponential growth model $y=a(1+r)^{t}$ where ' a ' is the initial amount and ' r ' is the percent increase expressed as a decimal.

- Exponential Decay Function: A function of the form $f(x)=a \cdot b^{x}$ where $a>0$ and $0<b<1$
- Decay Factor: The quantity $1-r$ in the exponential decay model $y=a(1-r)^{t}$ where ' a ' is the initial amount and ' r ' is the percent decrease expressed as a decimal.

Exponential Decay $(b<1)$

* RATIONAL EXPONENTS
- CONVERTING A RADICAL EXPRESSION INTO RATIONAL EXPONENT (IN GENERAL)

$$
\sqrt[m]{a^{n}}=a^{\frac{n}{m}}
$$

- CONVERTING A RADICAL SQUARE ROOT INTO RATIONAL EXPONENT

$$
\sqrt{a}=a^{\frac{1}{2}}
$$

- CONVERTING A RADICAL CUBE ROOT INTO RATIONAL EXPONENT

$$
\sqrt[3]{a}=a^{\frac{1}{3}}
$$

- DISTRIBUTIVE PROPERTY FOR PRODUCT

$$
\sqrt[m]{a b}=\sqrt[m]{a} \cdot \sqrt[m]{b}
$$

- DISTRIBUTIVE PROPERTY FOR PRODUCT (SQUARE ROOT)

$$
\sqrt{a b}=\sqrt{a} \cdot \sqrt{b}
$$

- DISTRIBUTIVE PROPERTY FOR QUOTIENT

$$
\sqrt[m]{\frac{a}{b}}=\frac{\sqrt[m]{a}}{\sqrt[m]{b}}
$$

- DISTRIBUTIVE PROPERTY FOR QUOTIENT (SQUARE ROOT)

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

FACTORING \& FOIL

- DISTRIBUTIVE PROPERTY

$$
a(b+c)=a b+a c
$$

- FOIL

$$
\begin{aligned}
& (a+b)(c+d) \\
& =a(c+d)+b(c+d) \\
& =a c+a d+b c+b d
\end{aligned}
$$

- PERFECT SQUARE OF A BINOMIAL SUM

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}
$$

- PERFECT SQUARE OF A BINOMIAL

DIFFERENCE

$$
(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

- DIFFERENCE OF TWO SQUARES

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

- CUBE OF A BINOMIAL SUM

$$
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
$$

- CUBE OF A BINOMIAL DIFFERENCE

$$
(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}
$$

- SUM OF TWO CUBES

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

- DIFFERENCE OF TWO CUBES

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

- $a^{2}+b^{2}=$?
(There is NO Formula for SUM OF TWO SQUARES)

* QUADRATIC FUNCTION

- Quadratic function: There are three ways of expressing a quadratic function

1. Standard Form
2. Vertex Form
3. Intercept Form

- Standard Form of a Quadratic Function
- A function of the form

$$
y=a x^{2}+b x+c
$$

where $a \neq 0$.
The y-intercept of the function is ' c^{\prime}.
The graph of the function is either $U-$ shaped ($a>0$), or inverted U - shaped (\cap) ($a<0$)

SAT TIPS \& TRICKS
Dr. B's MATH MEALS
scholartutorials.com 732-744-9555

- *To find the y - coordinate of the vertex, first find the x - coordinate by using the formula

$$
x=-\frac{b}{2 a}
$$

and then plug the x-value found above in the equation $y=a x^{2}+b x+c$

- If the constant $a>0$, the parabola opens upwards (U) and the turning point or the vertex of the parabola is the lowest point and its y-coordinate is the minimum value of the quadratic function.
- If the constant $a<0$, the parabola opens downwards (n) and the turning point or the vertex of the parabola is the highest point and its y-coordinate is the maximum value of the quadratic function.
- The x coordinate of the vertex is

$$
x=\frac{-b}{2 a}
$$

- The axis of symmetry of the parabola that passes through the vertex is a vertical line

$$
x=\frac{-b}{2 a}
$$

- Quadratic Formula

- If $a x^{2}+b x+c=0$, where $a \neq 0$ and a, b and c are real numbers, then the roots or the solutions of the equation refer to the values of x that satisfy the equation and are found by using the formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

TIP: The Quadratic Formula is especially useful to find the solutions where the quadratic equation is not factorable (the quadratic expression is prime) or where the values of $a, b \& c$ are not numeric.

- Vertex Form of a Quadratic Function
- Equation of the parabola in the Vertex Form is $y=a(x-h)^{2}+k$ where the vertex is (h, k) and the equation of the axis of symmetry is $x=h$

SAT TIPS \& TRICKS
Dr. B's MATH MEALS
scholartutorials.com
732-744-9555

- Intercept Form of a Quadratic Function
- Equation of the parabola in the intercept

Form is $y=a(x-p)(x-q)$ where $(p, 0)$ and $(q, 0)$ are the x-intercepts. The x coordinate of the vertex is $\frac{p+q}{2}$ and the equation of the axis of symmetry is

$$
x=\frac{p+q}{2}
$$

Intercept Form $y=a(x-p)(x-q)$

Any Variable Point

$$
\text { Axis of Symmetry } \rightarrow x=\frac{p+q}{2}
$$

- The discriminant of the quadratic equation $a x^{2}+b x+c=0$ is $b^{2}-4 a c$ and the value of the discriminant determines the number and nature of the solutions
- If $b^{2}-4 a c=0$, there is one real solution. (Graphically speaking, the parabola touches the X-axis at the vertex and has only one x - intercept which is the $x-$ coordinate of the vertex.

Dr. B's MATH MEALS
scholartutorials.com 732-744-9555

- If $b^{2}-4 a c>0$, there are two real solutions.
(Graphically speaking, the parabola crosses the X-axis at two points and has two $x-$ intercepts.)

- If $b^{2}-4 a c<0$, there is no real solution. It means that both solutions are complex conjugates of each other ($a \pm b i$) (Graphically speaking, the parabola does not touch or cross the X-axis and has no x - intercepts)

- If the value of $b^{2}-4 a c$ is a perfect square, then the two solutions are rational and if it is not a perfect square then they are conjugate irrational numbers $(p \pm \sqrt{q})$
- If $a x^{2}+b x+c=0$, where $a \neq 0$ and a, b and c are real numbers, then the

$$
\begin{gathered}
\text { Sum of the roots }=-\frac{b}{a} \\
\text { Product of the roots }=\frac{c}{a}
\end{gathered}
$$

* INEQUALITIES

- Graphing one-variable inequalities -

- Closed circle (\cdot) because of the $=$ sign in the inequality $\leq \geq$

- Open circle (O) because there is no $=$ sign in the inequality $<>$
- Converting LESS THAN Absolute-Value Inequality into a Sandwich /AND Compound Inequality

If $|x| \leq a, \quad$ then $-a \leq x \leq a$.
Alternatively, $x \geq-a$ and $x \leq a$

- Converting GREATER THAN Absolute-Value Inequality into a TWO-TAILS/OR Compound Inequality

If $|x| \geq a$, then $x \leq-a$ or $x \geq a$.

- If $|x| \geq-a$, then x is any real number and there are infinitely many solutions since absolute value is always zero or positive and hence always greater than a negative number
- If $|x| \leq-a$, then there is no solution since absolute value is always zero or positive and hence never less than or equal to a negative number
- Converting LESS THAN Compound Inequality into an Absolute-Value Inequality
\mid Variable - Midpoint $\mid \leq 1 / 2($ Range $)$
- Converting GREATER THAN Compound Inequality into an Absolute-Value Inequality

$$
\mid \text { Variable }- \text { Midpoint } \mid \geq 1 ⁄ 2(\text { Range })
$$

- Complement of $<$ is \geq
- Complement of $>$ is \leq
- Complement of \leq is $>$
- Complement of \geq is $<$

* GRAPHING LINEAR INEQUALITIES

- To graph the linear inequality, we first convert it in the slope-intercept form $y \leq m x+b$ or $y \geq m x+b$. Then we graph the line $y=m x+b$. If the inequality is without the $=$ sign (<or $>$) then draw a dashed (-----) line and if the inequality is with the $=$ sign (\leq or \geq) then draw a solid line
\qquad
- If the inequality is less than type, then shade the area of the coordinate plane that contains the lower part of the Y-axis.
- If the inequality is greater than type, then shade the area of the coordinate plane that contains the upper part of the Y-axis. TIP: If this question is asked in the Calculator section, then you may use the

Dr. B's MATH MEALS
scholartutorials.com 732-744-9555

graphing calculator for accuracy and saving time.

* VARIATION
- Direct Variation or Direct Proportion between two variables (x and y) is when the two variables change in the same direction - both increase or both decrease.
- If $x \uparrow$ then $y \uparrow$ and if $x \downarrow$ then $y \downarrow$
- Equation of Direct Variation is $y=k \cdot x$
- Constant of Variation is $k=\frac{y}{x}$ (Quotient is Constant)
- Proportion is set by dividing the pair of variables $\frac{y_{1}}{x_{1}}=\frac{y_{2}}{x_{2}}$
- Inverse (Indirect) Variation or Inverse Proportion between two variables (x and y) is when the two variables change in the opposite direction - one increases then the other decreases.
- If $x \uparrow$ then $y \downarrow$ and if $x \downarrow$ then $y \uparrow$
- Equation of Inverse Variation is $y=\frac{k}{x}$
- Constant of Variation is $k=x \cdot y$
(Product is Constant)
- Proportion is set by multiplying the pair of variables $x_{1} \cdot y_{1}=x_{2} \cdot y_{2}$
- Distance $=$ Rate \cdot Time
- Rate $=\frac{\text { Distance }}{\text { Time }}$
- Time $=\frac{\text { Distance }}{\text { Rate }}$
- Average Speed $=\frac{\text { Total Distance }}{\text { Total Time }}$
* TRANSFORMATIONS

Original Graph is RED

Transformed Graph is BLUE

- If $y=f(x)$ is the parent function, then
- Translations
- Transformed Equation: $y=f(x)+k$
(Vertical shift up by ' k ' units)

SAT TIPS \& TRICKS
Dr. B's MATH MEALS
scholartutorials.com 732-744-9555

- Transformed Equation: $y=f(x)-k$ (Vertical shift down by ' k ' units)

- Transformed Equation: $y=f(x+k)$ (Horizontal shift to the left by ' k ' units)

Horizontal Shift to the left
for the same y - value,
the x - value decreases by ' k '

- Transformed Equation: $y=f(x-k)$
(Horizontal shift to the right by ' k ' units)

Horizontal Shift to the right for the same y - value, the $x-v a l u e ~ i n c r e a s e s ~ b y ~ ' ~ k ' ~$

- Reflections
- Transformed Equation: $y=-f(x)$ (Reflection over the X-axis)

Reflection over the X-axis for the same x - value,
the y - value becomes opposite in sign

- Transformed Equation: $y=f(-x)$
(Reflection over the Y-axis)
Reflection over the Y-axis
for the same x - value, the y - value becomes opposite in sign

- DILATION

- Transformed Equation: $y=k \cdot f(x)$

$$
(k>1)
$$

(Vertical stretch by a factor of ' k ')
Vertical Stretch
for the same x-value, the y - value expands to a multiple of ' k '

- Transformed Equation: $y=k \cdot f(x)$

$$
(0<k<1)
$$

(Vertical shrink by a factor of ' k ')
Vertical Compression/Shrink for the same x-value, the y - value shrinks to a multiple of ' k '

- Transformed Equation: $y=f(k \cdot x)$

$$
(0<k<1)
$$

(Horizontal stretch by a factor of ${ }^{\prime} \frac{1}{k}$ ')

Horizontal Stretch

for the same y - value,
the x - value expands to a multiple of ' k '

- Transformed Equation: $y=f(k \cdot x)$

$$
(k>1)
$$

(Horizontal shrink by a factor of ($\frac{1}{k}$)

Horizontal Compression/Shrink

 for the same y - value, the x - value shrinks to a multiple of ' k '

* COMPLEX NUMBERS

- A number $a+i b$ is a complex number where a and b are real numbers and i is the imaginary unit. $(i=\sqrt{-1}) \cdot ' a$ ' is the real part of the complex number and ' $i b^{\prime}$ ' is the imaginary part.
- Higher powers of i
- $i^{2}=-1$
- $i^{3}=i^{2} \cdot i=-1 \cdot i=-i$
- $i^{4}=\left(i^{2}\right)^{2}=(-1)^{2}=1$
- $i^{5}=i^{4} \cdot i=1 \cdot i=i \ldots \ldots \ldots \ldots$ and the cycle repeats after every four powers of i.
- Adding Complex Numbers: Two complex numbers $a+i b$ and $c+i d$ can be
added/subtracted by adding/subtracting their real parts and imaginary parts separately.

$$
\begin{aligned}
& (a+i b) \pm(c+i d) \\
& =(a \pm c)+i(b \pm d)
\end{aligned}
$$

- Multiplying Complex Numbers: Two
complex numbers $a+i b$ and $c+i d$ can be multiplied by FOIL

$$
\begin{aligned}
& (a+i b) \cdot(c+i d) \\
& =a c+a \cdot i d+i b \cdot c+i^{2} \cdot b d \\
& =a c+(a d+b c) i+(-1) \cdot b d \\
& =a c+(a d+b c) i-b d \\
& =(a c-b d)+(a d+b c) i
\end{aligned}
$$

- Conjugate of a Complex Number: The conjugate of a complex number $a+i b$ is $a-i b$ and vice versa. The real part remains the same and the sign of the imaginary part becomes opposite.
- Dividing Complex Numbers: A complex number $a+i b$ can be divided by another complex number $c+i d$ by multiplying and dividing by the conjugate of $c+i d$ which is $c-i d$ and then do FOIL and simplification as shown in the following example:
$\frac{5+2 i}{3-4 i}=\frac{5+2 i}{3-4 i} \cdot \frac{3+4 i}{3+4 i}=\frac{15+20 i+6 i+8 i^{2}}{9-16 i^{2}}$

$$
=\frac{15+20 i+6 i+8 i^{2}}{9-16 i^{2}}=\frac{15+26 i+8(-1)}{9-16(-1)}
$$

$$
=\frac{15+26 i-8}{9+16}=\frac{7+26 i}{25}=\frac{7}{25}+\frac{26 i}{25}
$$

POLYNOMIALS

- If the graph of the polynomial function $y=f(x)$ passes through the point (a, b) then the coordinates of the point (a, b) satisfy the equation $y=f(x)$. We can plug the values of the coordinates in the equation of the polynomial function $y=$ $f(x)$ and get $b=f(a)$. This strategy is useful to find values in many questions.
- " c is a zero of the function f " means:
- $x=c$ is the root or the solution of the equation $f(x)=0$
- $(x-c)$ is a factor of $f(x)$
- The graph of $y=f(x)$ intersects the x-axis at $(c, 0)$
- REMAINDER THEOREM: If the polynomial function $f(x)$ is divided by the linear expression $(x-a)$ then the remainder is $f(a)$
- FACTOR THEOREM: If the polynomial function $f(x)$ is divided by the linear expression $(x-a)$ and the remainder is zero, then $(x-a)$ is a factor of $f(x)$. So if
$f(a)=0$ means that $(x-a)$ is a factor of the polynomial function $f(x)$.

* CIRCLES

- Length of the Arc of a Circle

Length of the Arc

$$
\begin{aligned}
& =\frac{m \angle(\text { Central Angle })^{\circ}}{360^{\circ}} \times \text { Circumference } \\
& =\frac{m \angle(\text { Central Angle })^{\circ}}{360^{\circ}} \times 2 \pi r \\
& =\frac{x^{\circ}}{360^{\circ}} \times 2 \pi r
\end{aligned}
$$

- Area of the Sector of a Circle

- Area of the Sector

$$
=\frac{m \angle(\text { Central Angle })^{\circ}}{360^{\circ}} \times \text { Area of the Circle }
$$

$$
\begin{aligned}
& =\frac{m \angle(\text { Central Angle })^{\circ}}{360^{\circ}} \times \pi r^{2} \\
& =\frac{x^{\circ}}{360^{\circ}} \times \pi r^{2}
\end{aligned}
$$

- Using Proportions

In the form of a Proportion, we may express the above as follows:
$\frac{\text { Length of the Arc }}{\text { Circumference }}=\frac{m \angle(\text { Central Angle })^{\circ}}{360^{\circ}}$
$\frac{\text { Area of the Sector }}{\text { Area of the Circle }}=\frac{m \angle(\text { Central Angle })^{\circ}}{360^{\circ}}$

- If the measure of the central angle is given in terms of π, then the measure is usually in radians.
- Equation of Circle in CENTER - RADIUS FORM:

Equation of Circle $\odot P$ with center as
$P(h, k)$ and radius $=r$ is

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

- Important Rules:

- A tangent to the circle is always perpendicular to the radius drawn from the
center to the point of contact or the point of tangency

- Congruent chords are equidistant from the center of the circle

- Perpendicular from the center to the chord bisects the chord

Dr. B's MATH MEALS
scholartutorials.com 732-744-9555

- Relationship between the Central Angle, Inscribed Angle, and Intercepted Arc

Measure of the Central Angle $\angle B O C$
$=$ Measure of the Intercepted Arc $\overparen{A B}$
$=x^{\circ}$

Measure of the Inscribed Angle $\angle B A C$
$=1 / 2($ Measure of the Intercepted Arc $\overparen{A B})$
$=1 / 2\left(x^{\circ}\right)=\left(\frac{x}{2}\right) 。$

* ANGLES

- If two angles are congruent, then their measures are equal. If $\angle A \cong \angle B$; then $m \angle A=m \angle B$

$$
\begin{gathered}
\angle A \cong \angle B \\
m \angle A=m \angle B
\end{gathered}
$$

- Vertical Angles, also called opposite angles, are congruent

Vertical Angles are conguent

- If two parallel lines are cut by a transversal, then the following pairs of angles are congruent:
- 4 pairs of Corresponding Angles are congruent
- 2 pairs of Alternate Interior Angles are congruent
- 2 pairs of Alternate Exterior Angles are congruent
- If two angles form a linear pair, the angles are supplementary, whose measures add up to 180°.
- If two parallel lines are cut by a transversal, then the following pairs of angles are supplementary:
- 2 pairs of Same-Side or Consecutive Interior Angles are supplementary
- 2 pairs of Same-Side or Consecutive

Exterior Angles are supplementary

- The 4 pairs of congruent Corresponding Angles are:

$$
\begin{aligned}
& \angle 1 \cong \angle 5 ; \\
& \angle 2 \cong \angle 6 ; \\
& \angle 3 \cong \angle 7 ; \\
& \angle 4 \cong \angle 8 ;
\end{aligned}
$$

- The 2 pairs of congruent Alternate Interior Angles are:

$$
\begin{aligned}
& \angle 3 \cong \angle 5 ; \\
& \angle 4 \cong \angle 6 ;
\end{aligned}
$$

- The 2 pairs of congruent Alternate Exterior Angles are:

$$
\begin{aligned}
& \angle 2 \cong \angle 8 ; \\
& \angle 1 \cong \angle 7 ;
\end{aligned}
$$

- The 2 pairs of supplementary Same-Side or Consecutive Interior Angles are:

$$
\begin{aligned}
& m \angle 3+m \angle 6=180^{\circ} \\
& m \angle 4+m \angle 5=180^{\circ}
\end{aligned}
$$

- The 2 pairs of supplementary Same-Side or Consecutive Exterior Angles are:

$$
\begin{aligned}
& m \angle 1+m \angle 8=180^{\circ} \\
& m \angle 2+m \angle 7=180^{\circ}
\end{aligned}
$$

TRIANGLES

In similar triangles, the corresponding angles are congruent, and the lengths of the corresponding sides are proportional. If Δ $A B C \sim \triangle P Q R$, then

$$
A \cong \angle P ; \angle B \cong \angle Q ; \angle C \cong \angle R
$$

$$
\frac{A B}{P Q}=\frac{A C}{P R}=\frac{B C}{Q R}
$$

SAT TIPS \& TRICKS
Dr. B's MATH MEALS
scholartutorials.com 732-744-9555

PYTHAGOREAN THEOREM: In any right triangle, the square of the length of the hypotenuse is always equal to the sum of the squares of the lengths of the legs.

$$
\begin{aligned}
& (\text { hypotenuse })^{2}=\left(\operatorname{leg}_{1}\right)^{2}+\left(\operatorname{leg}_{2}\right)^{2} \\
& \text { hypotenuse }=\sqrt{\left(\operatorname{leg}_{1}\right)^{2}+\left(\operatorname{leg}_{2}\right)^{2}} \\
& \text { leg }_{1}=\sqrt{(\text { hypotenuse })^{2}-\left(\operatorname{leg}_{2}\right)^{2}} \\
& \text { leg }_{2}=\sqrt{(\text { hypotenuse })^{2}-\left(\operatorname{leg}_{1}\right)^{2}}
\end{aligned}
$$

- Famous Pythagorean Triples:

$$
3-4-5 ; 6-8-10 ; 5-12-13
$$

- Not-so-Famous Pythagorean Triples:

$$
8-15-17 ; 7-24-25 ; 9-40-41
$$

- In special right triangles:

$$
30^{\circ}-60^{\circ}-90^{\circ} \text { and } 45^{\circ}-45^{\circ}-90^{\circ},
$$

there is a special relationship among the three sides as follows -

- $30^{\circ}-60^{\circ}-90^{\circ}$: If the side opposite to 30° is x, then the side opposite to 60° will be $x \sqrt{3}$ and the side opposite to 90° will be $2 x$.

- $45^{\circ}-45^{\circ}-90^{\circ}$: If the side opposite to 45° is x, then the side opposite to 90° will be $x \sqrt{2}$.

* GEOMETRY FORMULAS FOR PERIMETER, AREA, SURFACE AREA \& VOLUME

Key to decode the Perimeter, Area, Surface Area, and Volume formulas -
$s=$ side or edge;
$l=$ length $; w=$ width $; h=$ height $;$
$r=$ radius;
$d=$ diameter or diagonal;
$l=$ slant height
$C=$ Circumference of the Base;
$P=$ Perimeter of the Base;
$B=$ Area of the Base

2 - DIMENSIONAL FIGURES

- Square

Perimeter of a Square $=4 s$
Diagonal of a Square $=d=s \sqrt{2}$
Area of Square $=s^{2}=\frac{1}{2} d^{2}$

- Rectangle

Perimeter of a Rectangle $=2 l+2 w$
Diagonal of a Rectangle $=d=\sqrt{l^{2}+w^{2}}$
Area of a Rectangle $=l \cdot w$

- Triangle

Area of a Triangle $=\frac{1}{2} \cdot b \cdot h$

- Equilateral Triangle

Area of an Equilateral Triangle $=\frac{\sqrt{3}}{4} \cdot s^{2}$

- Parallelogram

Area of a Parallelogram $=b \cdot h$

SAT TIPS \& TRICKS
Dr. B's MATH MEALS
scholartutorials.com 732-744-9555

- Trapezoid

Area of a Trapezoid $=\frac{1}{2}\left(b_{1}+b_{2}\right) \cdot h$

- Circle

Circumference of a Circle $=2 \pi r=\pi d$
Area of a Circle $=\pi r^{2}$

3 - DIMENSIONAL FIGURES

- Cube

Volume of a Cube $=s^{3}=B \cdot h$
Length of a Diagonal of a Cube $=s \sqrt{3}$

- Rectangular Prism

Lateral Area of a Rectangular Prism $=P \cdot h$
Surface Area of a Rectangular Prism

$$
\begin{aligned}
& =2 B+P \cdot h \\
& =2 l w+2 l h+2 w
\end{aligned}
$$

Volume of a Rectangular Prism $=l \cdot w \cdot h$

- Pyramid

Lateral Area of a Pyramid $=1 / 2 \cdot P \cdot l$
Surface Area of a Pyramid

$$
=B+1 / 2 \cdot P \cdot h
$$

Volume of a Pyramid $=\frac{1}{3} \cdot B \cdot h$

Lateral Area of a Cube $=4 s^{2}=P \cdot h$
Surface Area of a Cube $=6 s^{2}=2 B+P \cdot h$

- Cone

Lateral Area of a Cone $=1 / 2 \cdot C \cdot h=\pi r l$
Surface Area of a Cone $=\pi r^{2}+\pi r l$
Volume of a Cone $=\frac{1}{3} \pi r^{2} h$

- Cylinder

Lateral Area of a Cylinder $=C \cdot h=2 \pi r h$
Surface Area of a Cylinder $=2 B+C \cdot h$
Surface Area of a Cylinder

$$
=2 \pi r^{2}+2 \pi r h
$$

Volume of a Cylinder $=\frac{1}{3} \cdot B \cdot h=\pi r^{2} h$

- Sphere

Lateral Area of a Sphere = ?
(No such concept! Think why?)
Surface Area of a Sphere $=4 \pi r^{2}$
Volume of a Sphere $=\frac{4}{3} \pi r^{3}$

Ratios of Perimeter, Area \& Volume

If the length of the sides of two
geometrical figures is in the ratio of $a: b$ then the

Ratio of Perimeters is $a: b$
Ratio of Areas is $a^{2}: b^{2}$
Ratio of Volume is $a^{3}: b^{3}$

* TRIGONOMETRY

In a right triangle $\triangle A B C$, right angled at C, means $m \angle C=90^{\circ}$

$$
\begin{aligned}
& \sin A=\frac{\text { opposite side }}{\text { hypotenuse }}=\frac{a}{c} \\
& \cos A=\frac{\text { adjacent side }}{\text { hypotenuse }}=\frac{b}{c} \\
& \tan A=\frac{\text { opposite side }}{\text { adjacent side }}=\frac{a}{b}
\end{aligned}
$$

* CONVERTING DEGREES INTO RADIANS

To convert (x°) degrees to radians, multiply x° by $\frac{\pi}{180}$
$x^{\circ}=x \cdot \frac{\pi}{180}$ radians

* CONVERTING DEGREES INTO RADIANS

To convert (x) radians to degrees, multiply x by $\frac{180}{\pi}$

$$
x \text { radians }=\frac{180}{\pi} \cdot x^{\circ}
$$

* DEGREES AND RADIAN RELATIONSHIP OF SOME SPECIAL ANGLES

Degrees and Radian Relationship of some Special Angles:

- $180^{\circ}=\pi$ radians
- $270^{\circ}=\frac{3 \pi}{2}$ radians
- $360^{\circ}=2 \pi$ radians
- $30^{\circ}=\frac{\pi}{6}$ radians
- $45^{\circ}=\frac{\pi}{4}$ radians
- $60^{\circ}=\frac{\pi}{3}$ radians
- $90^{\circ}=\frac{\pi}{2}$ radians
* Cofunction Relationship
- $\sin x^{\circ}=\cos (90-x)^{\circ}$
- $\cos x^{\circ}=\sin (90-x)^{\circ}$
- If $\sin A^{\circ}=\cos B^{\circ}$, then $A+B=90$
- In radians, $\sin x=\cos \left(\frac{\pi}{2}-x\right)$
- In radians, $\cos x=\sin \left(\frac{\pi}{2}-x\right)$
- In radians, $\sin A=\cos B$,

$$
\text { then } A+B=\frac{\pi}{2}
$$

- In words, Sine of an angle is equal to the Cosine of the complementary angle and vice-versa.
- The cofunction relationship comes from the fact that the side opposite to angle A is the same as the side adjacent to angle B and vice-versa.

